

Zero Bias and HF-based Minimum Bias Triggering for pp Collisions at 14TeV in CMS

Jeremy Callner University of Illinois at Chicago CMS collaboration

The Large Hadron Collider

- 27km circumference
- Proton collisions first at 0.9TeV, then at 10TeV
- Full energy will be 14TeV
- Startup in Spring 09

Events triggered by timing of bunch crossing

- Underlying event and other analyses require data as free from triggering bias as possible
- Low luminosities during ramp-up provide opportunity to obtain zero bias data

Bunch Patterns and Luminosity Ranges

- The LHC has 3564 buckets that can be filled
- Consider 4 different bunch patterns that will be run

Bunch Pattern	Luminosity [cm ⁻² s ⁻¹]
43 x 43	3.8x10 ²⁹ – 1.7x10 ³⁰
156 x 156	1.1x10 ³¹ – 1.7x10 ³²
936 x 936	2.3x10 ³¹ – 5.0x10 ³²
2808 x 2808	1.7x10 ³² – 1.0x10 ³⁴

Ideal Min-Bias Data

- At each bunch crossing, any number of proton collisions can occur
- Data containing events with EXACTLY one collision will be called *ideal data*
- Are there regions of luminosity where one collision per bunch crossing is likely?

Obtaining Ideal Min Bias Data

Consider two triggering schemes:

Zero Bias Trigger:

- We record every bunch crossing, and we ask what fraction of the data is *ideal*
- □ 100% Efficient Min-Bias Trigger:
 - We consider a hypothetical perfect detector, that records every bunch crossing with AT LEAST one collision, and we ask what fraction of the data is *ideal*

Fractions of Ideal MinBias Data:

Triggered on 'ZeroBias' (Bunch Crossing) and '100% MinBias' (Detector)

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

Fractions of Ideal MinBias Data:

Triggered on 'ZeroBias' (Bunch Crossing) and '100% MinBias' (Detector)

UNIVERSITY OF ILLINOIS AT CHICAGO

Regions where one could (& should!) include Zero Bias trigger

APS DNP 2008 October 24th, 2008

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

- 21 m long, 15 m high
- 14,000 tons

- 4T superconducting magnet
- Silicon tracker, Ecal, Hcal, and Muon Tracking |η| < 2.5
- Forward Detectors out to higher $\boldsymbol{\eta}$

The Forward Hadronic Calorimeter (HF)

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

- There are 144 trigger towers designed for fast readout available at level 1 in each HF detector
- Two min-bias triggers should be employed:
 - OR Trigger: Trigger on at least one HF trigger tower on either side (positive or negative η)
 - AND Trigger: Trigger on at least one HF trigger tower on both sides (positive and negative η)

- Beam gas/halo collisions could contaminate the data sample
 - Need to reject such collisions
 - This can be done by requiring hits on *both* sides of HF, i.e. using 1
 AND trigger

- Three main collision types
 - Hard core
 - Single diffractive
 - Double diffractive
- Averaged to
 Minimum Bias
- Diffractive events require OR trigger

Triggering Efficiency for both triggers

	OR	AND
Minimum Bias	91.9%	71.5%
Hard Core	98.9%	88.7%
Single Diff	74.9%	31.3%
Double Diff	76.8%	30.9%

 Let's use this trigger to make a measurement of dN/dŋ

- Let's use this trigger to make a measurement of dN/dŋ
- Measured dN/dŋ appears higher due to trigger bias

Efficiency is not uniform across NCharge

- Data inverse weighted by efficiency curve
- Good agreement with non-triggered data
- Trigger bias can be corrected.

Summary and Outlook

- Rare opportunity to collect a significant sample of zero bias data during low luminosity startup of the LHC
- HF provides an effective trigger for min-bias data taking
- Detailed studies of early physics measurements using this trigger data are underway
 - Measurement of the Underlying Event in Jet Topologies using Charged Particle and Momentum Densities CMS-AN 2007/034
 - Measurement of Charged Hadron Spectra in Proton-Proton Collisions at 14 TeV CMS-AN 2007/021

Backup Slides

UIC UNIVERSITY OF ILLINOIS AT CHICAGO

- Correlation of the number of trigger towers hit above threshold
 - Minimum number of hits(1) should be employed

 Triggering Efficiency for both triggers
 OR AND
 Minimum bias: 91.9% 71.5%
 Hard core: 98.9% 88.7%
 Single Diff.: 74.9% 31.3%

Double Diff.: 76.8% 30.9%

Number of Charged Particles